Marina and Robert Langlois

August 8, 2011

«O» «Fr « =>»

<

DA

Classic Classification problem

o let S=<(x1,y1)s---,(Xm,Ym) > - training examples.
e x; € X - instance space and y; € Y -finite label space Y.
e Binary classification problems in which Y = {-1,1}

e To find: Prediction rule or to learn to predict a categorical
outcome from input

Pictures of possible classification problems

v

Pictures of possible classification problems

o . ® .’o . *
) d . .
. * .
- - . LN]
. .
1 ., . ..
s .. .
. s L ‘l .
o . hd .. L :
. . a® . ".‘.‘l o . -
e o . [R S s ®
- - . LI}
-1 . L] L
. ® . . .
- . - .
. .
=2} -® : . .
.
. . ® .
-3

"How may | help you?" (From R. Schapire talk)

@ goal: automatically categorize type of call requested by phone
customer
(Collect, CallingCard, PersonToPerson, etc.)

@ yes I'd like to place a collect call long distance please (Collect)

@ yes I'd like to place a call on my master card please
(CallingCard)

@ | just called a number in sioux city and | musta rang the
wrong number because | got the wrong party and | would like
to have that taken off of my bill (BillingCredit)

Example Cont.

Observation:

@ Easy: to find "rules of thumb” that are "often” correct
e e.g.. IF 'card’ occurs in utterance THEN predict
'CallingCard’

@ Hard: to find single highly accurate prediction rule

The Boosting Approach

@ Devise a comp. program for deriving rough rules of thumbs.
@ select small subset of examples

@ derive rough rule of thumb

@ examine 2nd set of examples

@ derive 2nd rule of thumb

°

repeat T times

Questions:
@ how to choose subsets of examples to examine on each round?
@ how to combine all the rules of thumb into single prediction
rule?

e boosting = general method of converting rough rules of thumb
into highly accurate prediction rule

@ How to choose examples on each round?

— concentrate on "hardest” examples (misclassified by the
prev. rules of thumb)

«O>» «Fr «=)r» « =)

DA

Details

@ How to choose examples on each round?
— concentrate on "hardest” examples (misclassified by the

prev. rules of thumb)
@ How to combine rules of thumb into a single prediction rule?
— Take (weighted) majority vote of rules of thumb.

AdaBoost Approach. When and Who?

@ 1995 AdaBoost (Freund and Schapire)
@ 1997 Generalized version of AdaBoost (Schapire and Singer)

AdaBoost Approach

@ AdaBoost is an algorithm for constructing a "strong” classifier
as linear combination of "weak" classifiers h;(x):

.
F(x) = arh(x)
t=1

e Final hypothesis H(x) = sign(f(x)).
e Confidence is |H(x)|.

@ given training set (x1,)1), .-, (Xn, ¥n), where
yi € {—1,+1} correct label of instance x; € X.

«O» «Fr « =>»

« =

DA

@ given training set (x1,)1), .-, (Xn, ¥n), where

yi € {—1,+1} correct label of instance x; € X.
e initialize weights w; = 1/n

«O» «Fr « =>»

« =

DA

AdaBoost Algrithm

@ given training set (x1,y1),- -, (Xn, ¥n), where
y; € {—1,+1} correct label of instance x; € X.

e initialize weights w; = 1/n
o fort=1,..., T

AdaBoost Algrithm

@ given training set (x1,y1),- -, (Xn, ¥n), where
y; € {—1,+1} correct label of instance x; € X.

e initialize weights w; = 1/n
o fort=1,..., T
o (Call WeakLearn) Find weak hypothesis ("rule of thumb™)

he s X — {—1,41}.

with minimum error w.r.t. distribution w;;

AdaBoost Algrithm

@ given training set (x1,y1),- -, (Xn, ¥n), where
y; € {—1,+1} correct label of instance x; € X.

initialize weights w; = 1/n
fort=1,..., T
(Call WeakLearn) Find weak hypothesis (" rule of thumb™)

he s X — {—1,41}.

with minimum error w.r.t. distribution w;;

Choose a; € R,

AdaBoost Algrithm, cont

o Update:

_ wi (1) e—ctyihe(xi))
we1(i) = e Z: ’

where Z; is the normalization factor, s.t. w;41 is distribution:

Zt = Z Wt+1(i).
i=1

AdaBoost Algrithm, cont

o Update:

_ wi (1) e—ctyihe(xi))
we1(i) = e Z: ’

where Z; is the normalization factor, s.t. w;41 is distribution:

Zt = Z Wt+1(i).
i=1

e Output H(x) = sign (Zthl atht(x)>

Effect on the training set

wer1 (i) =

we(i)e—oeyihe(x))

Zt

«O>» «F»r « >

« =

DA

Effect on the training set

. Ne—aryihi(xi))
Wt+1(’) _ Wt(’)

Z

e_at.VIht(Xi)) _ < 1’ if Yi = ht(Xi)
>1,

if yi # he(xi)

«Or» «4F»r « =>»

«E»

DA

Re-weighting

Effect on the training set

Wt(,')e—at}/iht(xi))
Zy

Wt+1(/) =

e—Oéty,'ht(Xi)) _ <1, ify = ht(Xi)
> 1, if Yi 7& ht(X,')
Thus Increase (decrease) weight of wrongly (correctly) classified
examples.

Toy example

‘ Toy Example = taken from Antonio

Torralba @MIT

e %o o °
® Each data point has
® e o L BN
e o p?° .' o a class label:
e © e © ® [1@
e 0°P g0 o © m={ ©
° o 1@
®. o ° 0o © © @
® L and a weight:
e o @ (@ e w, =1
e ©
Weak learners from ® ® e o ®
the family of lines
-
h=="plerrory="05itisatchance—

Toy example

\Toy example

Each data point has
a class label:
o ©® o - { +1(@)
o ° "l
* and a weight:
® w,=1
[]

Thisoneseemstobethebest———
This is a ‘weak classifier: It performs slightly better than chance.

Toy example

\Toy example

. 090
. .. Each data point has
o] e o
o L] l. (o] ..q a class label:
L]
Oheo, V{Hm
. 0@ o {‘. 1@
]
e b ® We update the weights:
® ® . . w,+—w, exp{-y, H}
e e . .
° O

We set a new problem for which the previous weak classifier performs at chance again

Toy example

\Toy example

Each data point has
a class label:

+1 (@
ol 1@
-1@)
We update the weights:
w, —w, exp{-y, H}

We set a new problem for which the previous weak classifier performs at chance again

Toy example

\Toy example

Each data point has
a class label:
_{ +1 (@)
Y=
@ -1@
® We update the weights:
w,«—w, exp{-y, H}

We set a new problem for which the previous weak classifier performs at chance again

Toy example

\Toy example

e ,
Each data point has
L [] a class label:
g i} { +1(@)
Y=
L -1@)

@ ® We update the weights:
w, +—w, exp{-y, H}

We set a new problem for which the previous weak classifier performs at chance again

Toy example

\Toy example

The strong (non- linear) classifier is built as the combination of
all the weak (linear) classifiers

New Problem To Solve

(O T <

>

«E>»

Q>

Drug activity problem by Dietterich et al

@ Example is a molecule and the points that make up the
example correspond to different physical configurations of that
molecule;

@ And the label indicates whether or not the molecule has a
desired binding behavior, which occurs if at least one of the
configurations has the behavior.

Multiple-Instance Problem. Motivation

@ It is not always possible to provide labeled instances for
training
@ Reasons

e Requires substantial human effort

e Requires expensive tests

e Disagreement among experts

o Labeling is not possible at instance level

@ Objective: present a learning algorithm that can learn from
limited information.

Multiple-Instance Problem. Formulation.

@ In MIL, instead of giving the learner labels for the individual
examples, the trainer only labels collections of examples,
which are called bags.

Multiple-Instance Problem. Formulation.

@ In MIL, instead of giving the learner labels for the individual
examples, the trainer only labels collections of examples,
which are called bags.

e Each bag contains many instances.

Multiple-Instance Problem. Formulation.

@ In MIL, instead of giving the learner labels for the individual
examples, the trainer only labels collections of examples,
which are called bags.

@ Each bag contains many instances.

@ A bag is labeled negative if all the instances in it are negative.

Multiple-Instance Problem. Formulation.

@ In MIL, instead of giving the learner labels for the individual
examples, the trainer only labels collections of examples,
which are called bags.

@ Each bag contains many instances.
@ A bag is labeled negative if all the instances in it are negative.

@ A bag is labeled positive if there is at least one instance in it
which is positive.

Aﬁo / /\o [® @ /.ﬁo\
‘\'J Q) NEIANRY

Multiple-Instance Problem. Formulation.

@ In MIL, instead of giving the learner labels for the individual
examples, the trainer only labels collections of examples,
which are called bags.

e Each bag contains many instances.

@ A bag is labeled negative if all the instances in it are negative.

@ A bag is labeled positive if there is at least one instance in it
which is positive.

(2o) ?.\ (o o)
AN AN

@ Goal: From a collection of labeled bags, the learner tries to

induce a concept that will label individual bags correctly.

Multiple-Instance Problem. Formulation.

@ In MIL, instead of giving the learner labels for the individual
examples, the trainer only labels collections of examples,
which are called bags.

@ Each bag contains many instances.
@ A bag is labeled negative if all the instances in it are negative.

@ A bag is labeled positive if there is at least one instance in it

which is positive.

(/0 o / \> [/\ [@ o\
AN AN

@ Goal: From a collection of labeled bags, the learner tries to
induce a concept that will label individual bags correctly.

@ The difficulty for learning this property is that it is unknown
which of the instances is responsible for a positive
classification of a bag.

@ Auer and Ortner, 2004,
o Blum, 1998,

@ Anyboost by Mason,
@ Our Approach

«O» «Fr « =>»

« =

Auer and Ortner, 2004

regular adaboost alg. with a weak learning algorithm that
handles MIL.

Uses bags weights.

Weak hypotheses are balls of arbitrary center and radius with
respect to some metric.

o Distribution accuracy: D(h, w) = "4 g)—,(g) wa (quality of
weak hypothesis)

Demand D(h,w) is > 1/2 + ¢, for e > 0.

For each weight distribution w = (wa, ..., wp,,) there is a ball
h=h(x,r) in H s.t. D(h,w) >1/2+ Tlﬁ, where k is the
number of positive bags in B.

Auer and Ortner, 2004

Brief idea

@ For each instance x in the positive bag they compute a ball
with center x and optimal radius ry:

ro = max{r' > 0|D(h(x, r'"), w) = max,D(h(x,r), w)}.

@ To speed up the bags are sorted by distance to x.

@ All instances inside the ball become positive and negative
outside the ball.

o Classification algorithms are robust to data with noise: some
instances can be mislabeled.

«O)r «FHr « =

Er» «E>»

DA

Blum, 1998

o Classification algorithms are robust to data with noise: some
instances can be mislabeled.

@ In the standard PAC-learning model, a learning algorithm is
repeatedly given labeled examples of an unknown target
concept, drawn independently from some probability
distribution.

Blum, 1998

o Classification algorithms are robust to data with noise: some
instances can be mislabeled.

@ In the standard PAC-learning model, a learning algorithm is
repeatedly given labeled examples of an unknown target
concept, drawn independently from some probability
distribution.

@ Goal: approximate the target concept with respect to this
distribution.

Blum, 1998

o Classification algorithms are robust to data with noise: some
instances can be mislabeled.

@ In the standard PAC-learning model, a learning algorithm is
repeatedly given labeled examples of an unknown target
concept, drawn independently from some probability
distribution.

@ Goal: approximate the target concept with respect to this
distribution.
@ Idea: treat ALL instances in the positive bag as positive

instances: i.e. positive class noise and ignore the bag level
information.

Blum, 1998

o Classification algorithms are robust to data with noise: some
instances can be mislabeled.

@ In the standard PAC-learning model, a learning algorithm is
repeatedly given labeled examples of an unknown target
concept, drawn independently from some probability
distribution.

@ Goal: approximate the target concept with respect to this
distribution.

@ Idea: treat ALL instances in the positive bag as positive
instances: i.e. positive class noise and ignore the bag level
information.

@ There is a reduction to learning with one-sided or two-sided
random classification noise.

Blum, 1998

o Classification algorithms are robust to data with noise: some
instances can be mislabeled.

@ In the standard PAC-learning model, a learning algorithm is
repeatedly given labeled examples of an unknown target
concept, drawn independently from some probability
distribution.

@ Goal: approximate the target concept with respect to this
distribution.

@ Idea: treat ALL instances in the positive bag as positive
instances: i.e. positive class noise and ignore the bag level
information.

@ There is a reduction to learning with one-sided or two-sided
random classification noise.

@ Thus standard and well-developed algorithms can be used.

Anyboost, Mason et al

@ Gradient descent alg. for choosing linear combination of
elements of an inner product function space so as to minimize
some cost function.

Anyboost, Mason et al

@ Gradient descent alg. for choosing linear combination of
elements of an inner product function space so as to minimize
some cost function.

o Let (x,y) examples from X x Y/, interested in voted
combination of classifiers of the form sgn(F(x)), where

;
F(x) = arh(x),
t—1

h: are base classifiers and «; are classifiers weight.
e Margin of (x,y) is wrt sgn(F(x)) is yF(x)
e Goal: P(sgn(F(x)) # y) is small.

Anyboost, Mason et al

o Find voted classifiers which minimize the sampling average of
some cost function of the margin.
@ Thus need to find F such that

C(F) = =3~ ClyiF(x)
i=1

is minimized for some suitable cost function C : R =+ R
@ Using gradient decent method outputs f € F with a large
value of — < VC(F),f >

Table 1: Existing voting methods viewed as AnyBoost on margin cost functions.

Algorithm Cost function Step size
AdaBoost [9] e vF(@) Line search
ARC-X4 [2] (1—yF(z))® 1/t
ConfidenceBoost [19] e vFlz) Line search
LogitBoost [12] In(T + e ¥F=]) | Newton-Raphson

AnyBoost MIL cost function: Viola, 2006

@ Noisy-OR Boost: They have custom cost function which
weights on the instance level

o Use weak classifier uses these weights (do not need weak MIL
learner)

@ Thus MIL is handles by a proposed cost function and not by
the weak learning algorithm.

@ In order to make weak classification more accurate they
down-weight instances in the pos. bag believed to be negative.

@ Boosting utilizes MIL information through cost function and
weights.

Our Idea. Bag-level prediction

@ We followed the original paper (Schapire, 1997) and proposed
the following approach for bag-level prediction.

@ Weak classifier gives us not only the label of each instance but
also the probability of an instance being positive.

@ We incorporated this knowledge and created a weak
hypothesis for a bag using weak hypothesis for the instances.

Our version of Boosting Algorithm for MIL

e Given (x;,yi), i: bags, each bag has different number of
instances

Our version of Boosting Algorithm for MIL

e Given (x;,yi), i: bags, each bag has different number of
instances

("] W1,':].//V

Our version of Boosting Algorithm for MIL

e Given (x;,yi), i: bags, each bag has different number of
instances

@ Wy =]./N
@ Weak hyp. for bag using weak hypothesis for the instances

> (Peij - hyij)

He(xi) =
t(X) ZJ PtU

@ error: e = Z,- wei He(Xi)yi

Our version of Boosting Algorithm for MIL

e Given (x;,yi), i: bags, each bag has different number of
instances

e wy; =1/N

@ Weak hyp. for bag using weak hypothesis for the instances

> (Peij - hyij)

He(xi) =
t(X) ZJ PtU

error: e; = Z,- wei He (Xi)yi
Choose a;

Our version of Boosting Algorithm for MIL

e Given (x;,yi), i: bags, each bag has different number of
instances

@ Wy =]./N
@ Weak hyp. for bag using weak hypothesis for the instances

> (Peij - hyij)

He(xi) =
t(X) ZJ PtU

@ error: e = Z,- wei He(Xi)yi

@ Choose oy

wiiexp(—atHi(x;)yi)
Z:

@ Wiyl =

Our version of Boosting Algorithm for MIL

Given (x;, yi), i: bags, each bag has different number of
instances

Wi =]./N
Weak hyp. for bag using weak hypothesis for the instances

> (Peij - hyij)

Ht(X,') == P
Zj tij
error: e; = Z,- wei He(Xi)yi
Choose a;
. —arHi (x:)v;
Weili = wyjexp(Zt +(xi)yi)

Final output: H(x) = sign(>_, arH(x)).

Quick Proof

e oy is the key value. The question is HOW to choose the learning
parameter o.
First we prove an easy theorem:

Theorem

The following error holds on the training error of H:

1 T
NH' D H(xi) # yi}| < t_]__[lzr,

where N is a number of bags and Z; - normalization factor.

Let f(x;) = >, arHe(x;), then

wr (i) = exp(—yi Y-, arHe(xi))
T+1 NI, Z:

«O>» «F»r « >

« =

DA

Proof

Let f(x;) = >, a¢He(x;), then

exp(—yi >, caeHe(xi)) exp(—yif(x;))

WT+1(I) = NHt Zt NHt Zt

Also if H(x;) # y;i then y;f(x;) < 1 thus exp(—y;f(x;)) > 1.

Then predicate [H(x;) # yi] < exp(—yif(x;)).
Finally:
N ilH(xi) # yil < 3 3 exp(—yif (xi)) =
= >oi (e Ze) wra(i) =11; Ze.

o Let uj = yiH(x;)

Z = Z W(i)exp(_QUi)

(O <Fr <=»

<=

Q>

o Let u;

= yth(Xi)

Z = Z W()exp au’) - Z

<1+u, e 1_2”"ea)

«<O>» «Fr «=>»

«=>»

Q>

Choosing o

o Let u; = yiH:(x;)

1 1—u
Z = Z iexp(—au;) <Z < +u e Y+ 2u'e°‘>

@ Need to choose a to minimize the right hand side.
e =1 In(1+err) where err =Y, wiH(x;)yi

1—err

Receiver Operating Characteristic - ROC

— is a graphical plot of true positive rate, vs. false positive rate for
a binary classifier systems

actual value

[+ n total
. True False -
P Positive Positive
prediction
outcome
False True
ll.Il)) NI
Megative Megative

total P M

ROC curve

A ROC space is defined by FPR and TPR as x and y axes
respectively, which depicts relative trade-offs between true positive
(benefits) and false positive (costs).

A

TP=63 || FP=28 | 91

FN=37 TN=T72 (109

100 100 200

TPR = 0.63
FPR = 0.28

08

08

0.7

TPR or sensitivity
o o
wm om

o
=

0.3

0.2

0.1

Pefect Classification s

Oe

Better

1 1 1 1

|
01 02 03 04 05 06 07 08 08
FPR or (1 - specificity)

Results

{14
0.9 4]
0.8 +— 1
0.7 +
0.6 —
C2MIL
g BCZMM
b 0.5 1 O AdaBoost
B DlogQdds
mNor
0.4 —
0.3
0.2 +—
0.1 +—
o
Elephant Fox Musk1 Musk2 Tiger

Difference Between Algorithms

o Auer (Hyper-Balls)

e Weights on bags versus both bags and instances
o Weak learner: MIL vs. classifier

@ Blum (AdaBoost Classifer)
e Ours utilizes bag information
e Viola (AnyBoost with Noisy-OR)

o AnyBoost versus AdaBoost (choice of o and weight update)
e Cost function: Noisy-OR versus Asymmetric-OR

Open Problems

@ Re-weighing a bag, best distribution and to prove something
about it

@ Another cost function that we can prove theoretical results for.

Derivative approach (Schapire et al)

Z(a) =Z =), w(i)exp(—auj). The first derivative is

Z'(a) = — Z w(iujexp(—au;) = —ZZ Wey1(7

i

Thus, if wyyg is formed using the value of «; which minimizes Z;,
we'll have
Z Wt+l(i)ul =
i

We can numerically find the unique minimum of Z(«) by a simple
binary search, or more sophisticated numerical methods.

find a closed form solution.

e Maybe there is a "better” upper bound for Z(«a) that allows to

«O» «Fr « =>»

« =

DA

> Q>

