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Classic Classification problem

• Let S =< (x1, y1), . . . , (xm, ym) > - training examples.
• xi ∈ X - instance space and yi ∈ Y -finite label space Y.
• Binary classification problems in which Y = {−1, 1}

• To find: Prediction rule or to learn to predict a categorical
outcome from input



Pictures of possible classification problems



Pictures of possible classification problems



”How may I help you?” (From R. Schapire talk)

goal: automatically categorize type of call requested by phone
customer
(Collect, CallingCard, PersonToPerson, etc.)

yes I’d like to place a collect call long distance please (Collect)

yes I’d like to place a call on my master card please
(CallingCard)

I just called a number in sioux city and I musta rang the
wrong number because I got the wrong party and I would like
to have that taken off of my bill (BillingCredit)



Example Cont.

Observation:

Easy: to find ”rules of thumb” that are ”often” correct
• e.g.: IF ’card’ occurs in utterance THEN predict
’CallingCard’

Hard: to find single highly accurate prediction rule



The Boosting Approach

Devise a comp. program for deriving rough rules of thumbs.

select small subset of examples

derive rough rule of thumb

examine 2nd set of examples

derive 2nd rule of thumb

repeat T times

Questions:

how to choose subsets of examples to examine on each round?

how to combine all the rules of thumb into single prediction
rule?

• boosting = general method of converting rough rules of thumb
into highly accurate prediction rule



Details

How to choose examples on each round?
– concentrate on ”hardest” examples (misclassified by the
prev. rules of thumb)

How to combine rules of thumb into a single prediction rule?
– Take (weighted) majority vote of rules of thumb.
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AdaBoost Approach. When and Who?

1995 AdaBoost (Freund and Schapire)

1997 Generalized version of AdaBoost (Schapire and Singer)



AdaBoost Approach

AdaBoost is an algorithm for constructing a ”strong” classifier
as linear combination of ”weak” classifiers ht(x):

f (x) =
T∑
t=1

αtht(x)

Final hypothesis H(x) = sign(f (x)).

Confidence is |H(x)|.



AdaBoost Algrithm

given training set (x1, y1), . . . , (xn, yn), where
yi ∈ {−1,+1} correct label of instance xi ∈ X .

initialize weights wi = 1/n

for t = 1, . . . ,T

(Call WeakLearn) Find weak hypothesis (”rule of thumb”)

ht : X → {−1,+1}.

with minimum error w.r.t. distribution wt ;

Choose αt ∈ R,
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AdaBoost Algrithm, cont

Update:

wt+1(i) =
wt(i)e

−αtyiht(xi ))

Zt
,

where Zt is the normalization factor, s.t. wt+1 is distribution:

Zt =
n∑

i=1

wt+1(i).

Output H(x) = sign
(∑T

t=1 αtht(x)
)
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Re-weighting

Effect on the training set

wt+1(i) =
wt(i)e

−αtyiht(xi ))

Zt

e−αtyiht(xi )) =

{
< 1, if yi = ht(xi )

> 1, if yi 6= ht(xi )

Thus Increase (decrease) weight of wrongly (correctly) classified
examples.
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Multiple-Instance Problem

New Problem To Solve



Drug activity problem by Dietterich et al

Example is a molecule and the points that make up the
example correspond to different physical configurations of that
molecule;

And the label indicates whether or not the molecule has a
desired binding behavior, which occurs if at least one of the
configurations has the behavior.



Multiple-Instance Problem. Motivation

It is not always possible to provide labeled instances for
training

Reasons

Requires substantial human effort
Requires expensive tests
Disagreement among experts
Labeling is not possible at instance level

Objective: present a learning algorithm that can learn from
limited information.



Multiple-Instance Problem. Formulation.

In MIL, instead of giving the learner labels for the individual
examples, the trainer only labels collections of examples,
which are called bags.

Each bag contains many instances.

A bag is labeled negative if all the instances in it are negative.

A bag is labeled positive if there is at least one instance in it
which is positive.

Goal: From a collection of labeled bags, the learner tries to
induce a concept that will label individual bags correctly.

The difficulty for learning this property is that it is unknown
which of the instances is responsible for a positive
classification of a bag.
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AdaBoost Approaches

Auer and Ortner, 2004,

Blum, 1998,

Anyboost by Mason,

Our Approach



Auer and Ortner, 2004

regular adaboost alg. with a weak learning algorithm that
handles MIL.

Uses bags weights.

Weak hypotheses are balls of arbitrary center and radius with
respect to some metric.

Distribution accuracy: D(h,w) =
∑

h(B)=y(B) wB (quality of
weak hypothesis)

Demand D(h,w) is > 1/2 + ε, for ε > 0.

Lemma

For each weight distribution w = (wB1 , . . . ,wB|B|) there is a ball

h = h(x , r) in H s.t. D(h,w) > 1/2 + 1
4k+2 , where k is the

number of positive bags in B.



Auer and Ortner, 2004

Brief idea

For each instance x in the positive bag they compute a ball
with center x and optimal radius r0:

r0 = max{r ′ ≥ 0|D(h(x , r ′),w) = maxrD(h(x , r),w)}.

To speed up the bags are sorted by distance to x .

All instances inside the ball become positive and negative
outside the ball.



Blum, 1998

Classification algorithms are robust to data with noise: some
instances can be mislabeled.

In the standard PAC-learning model, a learning algorithm is
repeatedly given labeled examples of an unknown target
concept, drawn independently from some probability
distribution.

Goal: approximate the target concept with respect to this
distribution.

Idea: treat ALL instances in the positive bag as positive
instances: i.e. positive class noise and ignore the bag level
information.

There is a reduction to learning with one-sided or two-sided
random classification noise.

Thus standard and well-developed algorithms can be used.
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Anyboost, Mason et al

Gradient descent alg. for choosing linear combination of
elements of an inner product function space so as to minimize
some cost function.

Let (x , y) examples from X × Y , interested in voted
combination of classifiers of the form sgn(F (x)), where

F (x) =
T∑
t−1

αtht(x),

ht are base classifiers and αt are classifiers weight.

Margin of (x , y) is wrt sgn(F (x)) is yF (x)

Goal: P(sgn(F (x)) 6= y) is small.
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Anyboost, Mason et al

Find voted classifiers which minimize the sampling average of
some cost function of the margin.

Thus need to find F such that

C (F ) =
1

m

m∑
i=1

C (yiF (xi ))

is minimized for some suitable cost function C : R → R

Using gradient decent method outputs f ∈ F with a large
value of − < ∇C (F ), f >



AnyBoost MIL cost function: Viola, 2006

Noisy-OR Boost: They have custom cost function which
weights on the instance level

Use weak classifier uses these weights (do not need weak MIL
learner)

Thus MIL is handles by a proposed cost function and not by
the weak learning algorithm.

In order to make weak classification more accurate they
down-weight instances in the pos. bag believed to be negative.

Boosting utilizes MIL information through cost function and
weights.



Our Idea. Bag-level prediction

We followed the original paper (Schapire, 1997) and proposed
the following approach for bag-level prediction.

Weak classifier gives us not only the label of each instance but
also the probability of an instance being positive.

We incorporated this knowledge and created a weak
hypothesis for a bag using weak hypothesis for the instances.



Our version of Boosting Algorithm for MIL

Given (xi , yi ), i : bags, each bag has different number of
instances

w1i = 1/N

Weak hyp. for bag using weak hypothesis for the instances

Ht(xi ) =

∑
j(Ptij · htij)∑

j Ptij

error: et =
∑

i wtiHt(xi )yi

Choose αt

wt+1,i = wtiexp(−αtHt(xi )yi )
Zt

Final output: H(x) = sign(
∑

t αtHt(x)).
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Quick Proof

• αt is the key value. The question is HOW to choose the learning
parameter α.
First we prove an easy theorem:

Theorem

The following error holds on the training error of H:

1

N
|{i : H(xi ) 6= yi}| ≤

T∏
t=1

Zt ,

where N is a number of bags and Zt - normalization factor.



Proof

Let f (xi ) =
∑

t αtHt(xi ), then

wT+1(i) =
exp(−yi

∑
t αtHt(xi ))

N
∏

t Zt

=
exp(−yi f (xi ))

N
∏

t Zt

Also if H(xi ) 6= yi then yi f (xi ) ≤ 1 thus exp(−yi f (xi )) ≥ 1.
Then predicate [H(xi ) 6= yi ] ≤ exp(−yi f (xi )).
Finally:

1
N

∑
i [H(xi ) 6= yi ] ≤ 1

N

∑
i exp(−yi f (xi )) =

=
∑

i (
∏

t Zt)wT+1(i) =
∏

t Zt . (1)
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Choosing αt

Let ui = yiHt(xi )

Z =
∑
i

w(i)exp(−αui )

≤
∑
i

w(i)

(
1 + ui

1
e−α +

1− ui
2

eα
)

Need to choose α to minimize the right hand side.

α = 1
2 ln(1+err

1−err ), where err =
∑

i wiH(xi )yi
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Receiver Operating Characteristic - ROC

– is a graphical plot of true positive rate, vs. false positive rate for
a binary classifier systems



ROC curve

A ROC space is defined by FPR and TPR as x and y axes
respectively, which depicts relative trade-offs between true positive
(benefits) and false positive (costs).



ROC curve



Results



Difference Between Algorithms

Auer (Hyper-Balls)

Weights on bags versus both bags and instances
Weak learner: MIL vs. classifier

Blum (AdaBoost Classifer)

Ours utilizes bag information

Viola (AnyBoost with Noisy-OR)

AnyBoost versus AdaBoost (choice of α and weight update)
Cost function: Noisy-OR versus Asymmetric-OR



Open Problems

Re-weighing a bag, best distribution and to prove something
about it

Another cost function that we can prove theoretical results for.



Derivative approach (Schapire et al)

Z (α) = Z =
∑

i w(i)exp(−αui ). The first derivative is

Z ′(α) = −
∑
i

w(i)uiexp(−αui ) = −Z
∑
i

wt+1(i)ui

Thus, if wt+1 is formed using the value of αt which minimizes Zt ,
we’ll have ∑

i

wt+1(i)ui = 0.

We can numerically find the unique minimum of Z (α) by a simple
binary search, or more sophisticated numerical methods.



Another problem

• Maybe there is a ”better” upper bound for Z (α) that allows to
find a closed form solution.




